Call for Abstract

2nd International Conference on Enzymology and Molecular Biology, will be organized around the theme “Exemplifying the Prominence of Enzymology among Interdisciplinary Sciences”

Enzymology 2017 is comprised of 23 tracks and 56 sessions designed to offer comprehensive sessions that address current issues in Enzymology 2017.

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

Biochemistry, sometimes called biological chemistry, is the study of chemical processes within and relating to living organisms. By controlling information flow through biochemical signalling and the flow of chemical energy through metabolism, biochemical processes give rise to the complexity of life. Over the last decades of the 20th century, biochemistry has become so successful at explaining living processes that now almost all areas of the life sciences from botany to medicine to genetics are engaged in biochemical research. Today, the main focus of pure biochemistry is on understanding how biological molecules give rise to the processes that occur within living cells, which in turn relates greatly to the study and understanding of tissues, organs, and whole organisms - that is, all of biology.

  • Track 1-1Biochemical processes
  • Track 1-2Enzymatic chemistry
  • Track 1-3Biochemical signaling

Molecular enzymology is designing and synthesis of enzymes and high unmet medical needs are based on innovative drug targets. The work of designing and synthesis of enzymes and high unmet medical need are based on innovative drug targets.

Molecular Enzymology's interest include in all aspects related to enzymes like discovery of enzymes, enzyme structure, enzyme mechanisms, cellular and metabolic functions of enzymes, exploitation of enzymes for biotechnological and pharmaceutical applications, drug discovery, biochemical aspects of enzymes, bioinformatics, computational analysis, molecular modelling studies, new methods in enzyme expression and purification, bio catalysis, bio molecular engineering, enzyme kinetics and inhibitors.

  • Track 2-1Designing of enzymes
  • Track 2-2Synthesis of enzymes
  • Track 2-3Enzyme mechanisms
  • Track 2-4Bio molecular engineering
  • Track 2-5Enzyme expression

Enzymes are catalysts that increase the rate or velocity of physiologic reactions. Each and every reaction in our body takes place with the help of an enzyme. In general, most enzymes are present in cells at much higher concentrations than in plasma. Measurement of their levels in plasma indicates whether their tissue of origin is damaged leading to the release of intracellular components into the blood. This forms the basis of clinical enzymology. Thus clinical enzymology refers to measurement of enzyme activity for the diagnosis and treatment of diseases.

  • Track 3-1Chemical pathology
  • Track 3-2Toxicology
  • Track 3-3Spectrometry, electrophoresis & immunoassay

Enzymes are proteins processing cellular metabolism. They can affect a reaction by catalysing and they can be used to reverse the reaction in bio-chemical pathways. Though enzymes have complex enzyme structure they undergo many changes which is very important for reactions and so enzyme structure is very important. There is a specific enzyme for specific reaction.

Enzymes structures are made up of α amino acids which are linked together via amide (peptide) bonds in a linear chain. This is the primary structure. The resulting amino acid chain is called a polypeptide or protein. The specific order of amino acids in the protein is encoded by the DNA sequence of the corresponding gene.

  • Track 4-1Bio-chemical pathways of enzymes
  • Track 4-2 Metabolic pathway of enzymes
  • Track 4-3Activation energy of enzymes
  • Track 4-4"Lock and key" model of Enzymes
  • Track 4-5Exploitation of enzymes

Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or an agonist might inhibit the enzyme.

  • Track 5-1Immunoassays for protein detection
  • Track 5-2Chemical reactions of enzymes
  • Track 5-3Activation of enzymes
  • Track 5-4Inhibition of enzymes

Epigenetics is the study of heritable changes of gene expression without any change in the DNA Sequence which mainly includes processes such as DNA Methylation, histone modification and gene silencing. On-going novel researches are continuously discovering the character of epigenetics in a variety of fatal diseases and human disorders.

  • Track 6-1Histone modification
  • Track 6-2Gene silencing
  • Track 6-3DNA methylation

Enzymes are the proteins in the drug design that act as drug targets for the diseases in the process of drug discovery and development. There are number of drug targets involved in the designing of the drug.

Drug target as a nucleic acid or a protein (e.g. an enzyme, a receptor) whose activity can be modified by a drug. The drug can be a small-molecular-weight chemical compound or a biological, such as an antibody or a recombinant protein. The drug target should have been shown to be effective/mechanistically involved in the disease by relevant in vitro or in vivo models.

  • Track 7-1Drug designing using enzymes
  • Track 7-2Drug development using enzymes
  • Track 7-3Drug modelling
  • Track 7-4 Drug targeting

Recombinant DNA technology involves joining together of DNA molecules to produce some new genetic combinations by inserting it into a host organism. Now a days Scientists are carrying out many novel researches in the field of recombinant DNA technology to bring revolution in the field of genetic engineering of crops, animals and medicine.

  • Track 9-1DNA cloning
  • Track 9-2Recombinant DNA applications
  • Track 9-3Enzymes in recombinant DNA technology
  • Track 9-4Transgenic crops and animals

Enzymes are used in the chemical industry and other industrial applications when extremely specific catalysts are required. Enzymes in general are limited in the number of reactions they have evolved to catalyse and also by their lack of stability in organic solvents and at high temperatures. As a consequence, protein engineering is an active area of research and involves attempts to create new enzymes with novel properties, either through rational design or in vitro evolution. These efforts have begun to be successful, and a few enzymes have now been designed "from scratch" to catalyse reactions that do not occur in nature.

Enzymes are usually protein molecules that manipulate other molecules — the enzymes substrates. These target molecules bind to an enzyme's active site and are transformed into products through a series of steps known as the enzymatic mechanism.

  • Track 17-1Enzyme production
  • Track 17-2Enzymatic mechanisms
  • Track 17-3Enzyme purification

Molecular simulations and modelling are changing the science of enzymology. Calculations can provide detailed, atomic-level insight into the fundamental mechanisms of biological catalysts. Computational enzymology is a rapidly developing area, and is testing theories of catalysis, challenging 'textbook' mechanisms, and identifying novel catalytic mechanisms. Increasingly, modelling is contributing directly to experimental studies of enzyme-catalysed reactions. Potential practical applications include interpretation of experimental data, catalyst design and drug development.

  • Track 18-1Molecular simulations of enzymes
  • Track 18-2Molecular modelling of enzymes
  • Track 18-3Fundamental mechanisms of biological catalysts

In the presence of an enzyme, the reaction runs in the same direction as it would without the enzyme, just more quickly. For example, carbonic anhydrase catalyses its reaction in either direction depending on the concentration of its reactants. The rate of a reaction is dependent on the activation energy needed to form the transition state which then decays into products. Enzymes increase reaction rates by lowering the energy of the transition state. First, binding forms a low energy enzyme-substrate complex (ES). Secondly the enzyme stabilises the transition state such that it requires less energy to achieve compared to the uncatalyzed reaction (ES‡). Finally the enzyme-product complex (EP) dissociates to release the products.

  • Track 19-1Catalytic mechanisms of enzymes

Industrial fermentation is the intentional use of fermentation by microorganisms such as bacteria and fungi to make products useful to humans. Fermented products have applications as food as well as in general industry. Some commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. The rate of fermentation depends on the concentration of microorganisms, cells, cellular components, and enzymes as well as temperature, pH and for aerobic fermentation oxygen. Product recovery frequently involves the concentration of the dilute solution. Nearly all commercially produced enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as in the case of baker's yeast and lactic acid bacteria starter cultures for cheesemaking. In general, fermentations can be divided into four types:

  •  Production of biomass (viable cellular material)
  •  Production of extracellular metabolites (chemical compounds)
  •  Production of intracellular components (enzymes and other proteins)
  •  Transformation of substrate (in which the transformed substrate is itself the product)
  • Track 20-1Transformation of substrate
  • Track 20-2Production of intracellular components
  • Track 20-3Production of extracellular metabolites
  • Track 20-4 Production of biomass
  • Track 20-5Product recovery

Food enzymology includes the all the aspects of the enzymology important to the food systems. The basic aspects of the food enzymology include: methods of measuring enzymatic activities; extraction of enzymes from microbial,plant and animal systems; methods of enzyme purification and characterization; and regulation of enzyme activities by activators, inhibitors, and by covalent modification. Applied aspects of the course focus on enzymes used by the food industry and methods for controlling endogenous enzyme activities.

  • Track 21-1Enzymes in food digestion
  • Track 21-2Applications of immobilized enzymes in food
  • Track 21-3Single cell protein

A case study is generally a documented study of a specific real-life situation or imagined scenario, used as a training tool in business schools and firms. Students or trainees are required to analyse the prescribed cases and present their interpretations or solutions, supported by the line of reasoning employed and assumptions made. The case study consists of various notes that represent the particular patient. The detail of the particular patient such as laboratory findings, Medical history, Family history, Social history, Physical examination, Treatment plan etc.